In photosynthesis, the central step in transforming light energy into chemical energy is the coupling of light-induced electron transfer to proton uptake and release. Despite intense investigations of different photosynthetic protein complexes, including the photosystem II (PS II) in plants and the reaction center (RC) in bacteria, the molecular details of this fundamental process remain incompletely understood. In the RC of Rhodobacter (Rb.) sphaeroides, fast formation of the charge separated state, P +Q A −, is followed by a slower electron transfer from the primary acceptor, Q A, to the secondary acceptor, Q B, and the uptake of a proton from the cytoplasm. The proton transfer to Q B takes place via a protonated water chain. Mutation of the amino acid AspL210 to Asn (L210DN mutant) near the entry of the proton pathway can disturb this water chain and consequently slow down proton uptake. Time-resolved step-scan Fourier transform infrared (FTIR) measurements revealed an intermediate X in the Q A −Q B to Q AQ B − transition. The nature of this transition remains a matter of debate. In this study, we investigated the role of the iron–histidine complex located between Q A and Q B. We used time-resolved fast-scan FTIR spectroscopy to characterize the Rb. sphaeroides L210DN RC mutant marked with isotopically labeled histidine. FTIR marker bands of the intermediate X between 1120 cm −1 and 1050 cm −1 are assigned to histidine vibrations and indicate the protonation of a histidine, most likely HisL190, during the disappearance of the intermediate. Based on these results we propose a novel mechanism of the coupling of electron and proton transfer in photosynthesis.
Read full abstract