The dynamic event-triggered (DET) formation control problem of a class of stochastic nonlinear multi-agent systems (MASs) with full state constraints is investigated in this article. Supposing that the human operator sends commands to the leader as control input signals, all followers keep formation through network topology communication. Under the command-filter-based backstepping technique, the radial basis function neural networks (RBF NNs) and the barrier Lyapunov function (BLF) are utilized to resolve the problems of unknown nonlinear terms and full state constraints, respectively. Furthermore, a DET control mechanism is proposed to reduce the occupation of communication bandwidth. The presented distributed formation control strategy guarantees that all signals of the MASs are semi-globally uniformly ultimately bounded (SGUUB) in probability. Finally, the feasibility of the theoretical research result is demonstrated by a simulation example.
Read full abstract