SUMMARY We propose approximate equations for P-wave ray theory Green’s function for smooth inhomogeneous weakly anisotropic media. Equations are based on perturbation theory, in which deviations of anisotropy from isotropy are considered to be the first-order quantities. For evaluation of the approximate Green’s function, earlier derived first-order ray tracing equations and in this paper derived first-order dynamic ray tracing equations are used. The first-order ray theory P-wave Green’s function for inhomogeneous, weakly anisotropic media of arbitrary symmetry depends, at most, on 15 weak-anisotropy parameters. For anisotropic media of higher-symmetry than monoclinic, all equations involved differ only slightly from the corresponding equations for isotropic media. For vanishing anisotropy, the equations reduce to equations for computation of standard ray theory Green’s function for isotropic media. These properties make the proposed approximate Green’s function an easy and natural substitute of traditional Green’s function for isotropic media. Numerical tests for configuration and models used in seismic prospecting indicate negligible dependence of accuracy of the approximate Green’s function on inhomogeneity of the medium. Accuracy depends more strongly on strength of anisotropy in general and on angular variation of phase velocity due to anisotropy in particular. For example, for anisotropy of about 8 per cent, considered in the examples presented, the relative errors of the geometrical spreading are usually under 1 per cent; for anisotropy of about 20 per cent, however, they may locally reach as much as 20 per cent.