Abstract

The generalized ray tracing for the extraordinary ray through uniaxial crystals developed by Avendaño-Alejo and Stavroudis [J. Opt. Soc. Am. A 19, 1674 (2002)] has been applied to derive paraxial refracting equations. Paraxial equations are derived for three cases where the incident, ordinary, and extraordinary rays lie in the incident plane: (a) the crystal axis is parallel to the optical axis, (b) the crystal axis is orthogonal to the optical axis and lies in the plane of incidence, and (c) the crystal axis is orthogonal to both the optical axis and the incident plane. The paraxial ray-tracing equations for the extraordinary ray are represented by matrix operators. The elements of the matrix system give all the information of the focal points and of the principal points. Gaussian formulas are derived, and some examples are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.