Instructional guidelines for planning a multiproduct manufacturing activity (MA) for machining and assembly aimed at solving currently existing problems of machining industries process design, i.e. subjectivity of making design decisions, insufficient automation, and inability of the observing of current production situation are presented. The objective reasons for the need to improve approaches to the development of MA are the long cycle of the process design period, the low quality of the processes operation, and the impossibility to adjust MA at the implementation stage. The main structural elements of multiproduct manufacturing activity planning are described. Based on a systematic approach, all stages of work on technological support of production systems are combined, making possible to use the information arrays of data on the real state of the production system and operational information on production tasks in a short time frame. The results of theoretical work provide for the process of making MA as a system that combines the design and implementation of technology, taking into account the impact of changes in the production situation. In the process of approbation and use of the presented methodological approaches, significant areas of research were identified, smoothing away difficulties connected with the performance targets, enabling the development path of the system. Among them: the interaction with the design preparation of production; detailing data on the initial workpieces in connection with the choice of the MA structure and the appointment of a rational set of technological equipment; determining the requirements for technological equipment, focused on ensuring the flexibility of their use; determining the correlations between the multiple-path design of parts manufacturing process and the requirements for accuracy indicators in the assembly of products. The developed formalized models for the implementation of the stages of technological preparation of machining industries are a background for full automation of MA design and highly efficient functionality of machine-building complexes.
Read full abstract