In this paper, we consider a novel vector-valued rational interpolation algorithm and its application. Compared to the classic vector-valued rational interpolation algorithm, the proposed algorithm relaxes the constraint that the denominators of components of the interpolation function must be identical. Furthermore, this algorithm can be applied to construct the vector-valued interpolation function component-wise, with the help of the common divisors among the denominators of components. Through experimental comparisons with the classic vector-valued rational interpolation algorithm, it is found that the proposed algorithm exhibits low construction cost, low degree of the interpolation function, and high approximation accuracy.