Abstract

We describe geometrically and algebraically the set of unattainable points for the Rational Hermite Interpolation Problem (i.e. those points where the problem does not have a solution). We show that this set is a union of equidimensional complete intersection varieties of odd codimension, the number of them being equal to the minimum between the degrees of the numerator and denominator of the problem. Each of these equidimensional varieties can be further decomposed as a union of as many rational (irreducible) varieties as input data points. We exhibit algorithms and equations defining all these objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.