Compared with some other species, insulin dysregulation in equids is poorly understood. However, hyperinsulinemia causes laminitis, a significant and often lethal disease affecting the pedal bone/hoof wall attachment site. Until recently, hyperinsulinemia has been considered a counterregulatory response to insulin resistance (IR), but there is growing evidence to support a gastrointestinal etiology. Incretin hormones released from the proximal intestine, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide, augment insulin secretion in several species but require investigation in horses. This study investigated peripheral and gut-derived factors impacting insulin secretion by comparing the response to intravenous (iv) and oral d-glucose. Oral and iv tests were performed in 22 ponies previously shown to be insulin dysregulated, of which only 15 were classified as IR (iv test). In a more detailed study, nine different ponies received four treatments: d-glucose orally, d-glucose iv, oats, and commercial grain mix. Insulin, glucose, and incretin concentrations were measured before and after each treatment. All nine ponies showed similar iv responses, but five were markedly hyperresponsive to oral d-glucose and four were not. Insulin responsiveness to oral d-glucose was strongly associated with blood glucose concentrations and oral glucose bioavailability, presumably driven by glucose absorption/distribution, as there was no difference in glucose clearance rates. Insulin was also positively associated with the active amide of GLP-1 following d-glucose and grain. This study has confirmed a functional enteroinsular axis in ponies that likely contributes to insulin dysregulation that may predispose them to laminitis. Moreover, iv tests for IR are not reliable predictors of the oral response to dietary nonstructural carbohydrate.
Read full abstract