Dielectric constant for the earth and planetary surfaces has been estimated using reflection coefficients in the past. A recent trend is to use model-based decomposition for dielectric constant retrieval from polarimetric synthetic aperture radar (polSAR) data. We examine the reported literature in this regard and propose a unique dielectric constant estimation (UDCE) algorithm using three-component decomposition technique. In UDCE, the dielectric constant is obtained directly from one of the elements of the measured coherency matrix in a single step. The dielectric constant estimate from the UDCE is independent of the volume scattering model when single-bounce or double-bounce scattering is dominant. This avoids error propagation from overestimation of volume scattering to the copolarization ratios, and in turn, to the dielectric constant, inherent in reported algorithms that use model-based decomposition. Consequently, a unique solution is obtained. We also demonstrate that the solution from the UDCE is unaffected by using a higher-order model-based decomposition. We evaluate the performance of the proposed UDCE algorithm over three Apollo 12, Apollo 15, and Apollo 17 landing sites on the lunar surface using Chandrayaan- 2 dual-frequency synthetic aperture radar (DFSAR) datasets. An excellent convergence rate for dielectric constant estimation is maintained over all three test sites. Using the proposed UDCE algorithm, the dielectric constant maps are produced for the lunar surface using full polSAR data for the first time. We observe that the generated dielectric constant maps capture all the ground truth features, previously unseen with such clarity.
Read full abstract