Abstract

Despite the curse of dimensionality, kernel ridge regression often exhibits good performance in practical applications, even when the dimension is moderately large. However, it has been shown that kernel ridge regression cannot be free from the curse of dimensionality. Until now, the literature on kernel ridge regression has suggested that the gap between theory and practice in relation to dimensionality has not narrowed. In this study, we first investigate when the influence of dimensionality does not significantly affect the convergence rate of the kernel ridge regression. Specifically, we study the convergence rate of L2 and L∞ risks for the kernel ridge estimator, with a focus on reproducing kernel Hilbert space (RKHS) generated by a product kernel. We show that the univariate optimal convergence rate up to a logarithmic factor in L2 and L∞ risks can be achieved by controlling the size of the RKHS. The result of a numerical study confirms our theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.