Abstract

We develop a practical and computationally efficient penalised estimation approach for partially linear additive models to zero-inflated binary outcome data. To facilitate estimation, B-splines are employed to approximate unknown nonparametric components. A two-stage iterative expectation-maximisation (EM) algorithm is proposed to calculate penalised spline estimates. The large-sample properties such as the uniform convergence and the optimal rate of convergence for functional estimators, and the asymptotic normality and efficiency for regression coefficient estimators are established. Further, two variance-covariance estimation approaches are proposed to provide reliable Wald-type inference for regression coefficients. We conducted an extensive Monte Carlo study to evaluate the numerical properties of the proposed penalised methodology and compare it to the competing spline method [Li and Lu. ‘Semiparametric Zero-Inflated Bernoulli Regression with Applications’, Journal of Applied Statistics, 49, 2845–2869]. The methodology is further illustrated by an egocentric network study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.