Accurate photovoltaic (PV) power forecasting is indispensable to enhancing the stability of the power grid and expanding the absorptive photoelectric capacity of the power grid. As an excellent nonlinear regression model, the relevance vector machine (RVM) can be employed to forecast PV power. However, the optimization of the free parameters is still a key problem for improving the performance of the RVM. Taking advantage of the strong global search capability, good stability, and fast convergence rate of the sparrow search algorithm (SSA), this paper optimizes the parameters of the RVM by using the SSA to develop an excellent RVM (called SSA-RVM). Consequently, a novel hybrid PV power forecasting model via the SSA-RVM is proposed to perform ultra-short-term (4 h ahead) prediction. In addition, the effects of seasonal distribution and weather type on PV power are fully considered, and different seasonal prediction models are established separately to improve the prediction capability. The benchmark is used to verify the accuracy of the SSA-RVM-based forecasting model under various conditions, and the experiment results demonstrate that the proposed SSA-RMV method outperforms the traditional RVM and support vector machine models, and it even shows a better prediction effect than the RVM models with other optimization approaches.