Abstract

The strong rate of convergence for the Euler–Maruyama scheme of stochastic differential equations (SDEs) driven by a Brownian motion with Hölder continuous diffusion coefficient or irregular drift coefficient have been widely studied. In the case of irregular diffusion coefficient, however, there are few studies. In this article, under Le Gall's condition on the diffusion coefficient, which leads to conclude the pathwise uniqueness for SDEs, we provide the same result on the strong rate of convergence as in the case of 1/2-Hölder continuous diffusion coefficient. The idea of the proof is to use a version of Avikainen's inequality. As an application, we introduce a numerical scheme for SDEs with local time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call