This work proposed a liver cancer classification scheme that includes Preprocessing, Feature extraction, and classification stages. The source images are pre-processed using Gaussian filtering. For segmentation, this work proposes a LUV transformation-based adaptive thresholding-based segmentation process. After the segmentation, certain features are extracted that include multi-texon based features, Improved Local Ternary Pattern (LTP-based features), and GLCM features during this phase. In the Classification phase, an improved Deep Maxout model is proposed for liver cancer detection. The adopted scheme is evaluated over other schemes based on various metrics. While the learning rate is 60%, an improved deep maxout model achieved a higher F-measure value (0.94) for classifying liver cancer; however, the previous method like Support Vector Machine (SVM), Random Forest (RF), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), K-Nearest Neighbor (KNN), Deep maxout, Convolutional Neural Network (CNN), and DL model holds less F-measure value. An improved deep maxout model achieved minimal False Positive Rate (FPR), and False Negative Rate (FNR) values with the best outcomes compared to other existing models for liver cancer classification.