Abstract

Recycled manure solids has emerged as a promising alternative for animal bedding, owing to its economic feasibility, ready availability on farms, and soft, non-abrasive nature. This research aimed to assess the impact of recycled manure solids (RMS) bedding, combined with a conditioner containing 7.5% lime and 6% sodium hydrosulphate, on dairy cow welfare and gait kinematics over three months. Hock and knee injury scores, lameness incidence, and gait kinematic parameters were evaluated for animals housed on cement flooring (Control), RMS bedding (Treatment I), and conditioner-added RMS bedding (Treatment II) on days 0, 45, and 90 of the experiment with six crossbred cows in each group. The results revealed a significant reduction (p < 0.05) in lameness scores (5-point scale) for animals in both the RMS and conditioner-added RMS groups, with scores of 1.09 ± 0.05 and 1.04 ± 0.03, respectively, compared to those on cement floors. Moreover, a noteworthy decrease (p < 0.05) in knee and hock injury scores (4-point scale) was observed in the RMS groups, indicating a potentially positive impact on joint health. Gait kinematic analysis demonstrated that animals in the RMS (1.03 ± 0.04m/s) and conditioner-added RMS (1.02 ± 0.06m/s) groups exhibited higher walking speeds and increased step angles (158.59 ± 4.82° and 149.58 ± 3.85°) compared to their cement-floor counterparts. No significant changes (p > 0.05) were observed in stride length, step asymmetry, step length, and step width. The study concluded that the conditioner incorporated recycled manure solids resulting in a substantial decrease in lameness incidence and a reduction in hock and knee injuries among dairy cows. Additionally, the improved gait kinematics observed in non-lame animals suggest that this bedding combination positively influences overall animal well-being. These findings underscore the potential of sustainable bedding practices to enhance both physical health and locomotor behaviour in dairy cattle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.