We consider a model of quantum-wire junctions where the latter are described by conformal-invariant boundary conditions of the simplest type in the multicomponent compactified massless scalar free field theory representing the bosonized Luttinger liquids in the bulk of wires. The boundary conditions result in the scattering of charges across the junction with nontrivial reflection and transmission amplitudes. The equilibrium state of such a system, corresponding to inverse temperature β and electric potential V, is explicitly constructed both for finite and for semi-infinite wires. In the latter case, a stationary nonequilibrium state describing the wires kept at different temperatures and potentials may be also constructed. The main result of the present paper is the calculation of the full counting statistics (FCS) of the charge and energy transfers through the junction in a nonequilibrium situation. Explicit expressions are worked out for the generating function of FCS and its large-deviations asymptotics. For the purely transmitting case they coincide with those obtained in the literature, but numerous cases of junctions with transmission and reflection are also covered. The large deviations rate function of FCS for charge and energy transfers is shown to satisfy the fluctuation relations and the expressions for FCS obtained here are compared with the Levitov–Lesovik formulae.
Read full abstract