Aluminium (Al) is reported to promote free radical production, decrease the antioxidant enzyme status and disturb the enzyme activity involved in acetylcholine metabolism leading to cognitive dysfunction that are strongly associated with Alzheimer's disease (AD) pathogenesis. This work aimed at investigating the effect of Al-toxicity on synaptosomal membrane biophysical properties and lipid peroxidation during 65 days. We utilized ATR-IR spectroscopy to study the changes in membrane biochemical structure and biophysical properties of isolated rat cortical synaptosomes, and EPR spin trapping and labeling to follow NADPH oxidase activity and changes of membrane order parameter, respectively. The results showed increase in membrane fluidity and disorder in early 21d of AlCl3 treatment, while after 42d the membrane rigidity, packing, and order increased. The late (65d) an increase in the amount of unsaturated fatty acids, the accumulation of lipid peroxide end products, and ROS production were detected in rat cortex synaptosomes mediated by Al toxicity and oxidative stress (OS). A dramatic increase was also detected in Ca2+ level, synaptic membrane polarity, and EPR-detected order S-parameter. These outcomes strongly suggest that the synaptosomal membrane phospholipids underwent free radical attacks mediated by AlCl3 due to greater NOX activity, and the release of synaptic vesicles into synaptic cleft might be hindered. The adopted spectroscopic techniques have shed light on the biomolecular structure and membrane biophysical changes of isolated cortical synaptosomes for the first time, allowing researchers to move closer to a complete understanding of pathological tissues.
Read full abstract