Abstract

The gene defective in Huntington's disease encodes a protein, huntingtin, with unknown function. Antisera generated against three separate regions of huntingtin identified a single high molecular weight protein of approximately 320 kDa on immunoblots of human neuroblastoma extracts. The same protein species was detected in human and rat cortex synaptosomes and in sucrose density gradients of vesicle-enriched fractions, where huntingtin immunoreactivity overlapped with the distribution of vesicle membrane proteins (SV2, transferrin receptor, and synaptophysin). Immunohistochemistry in human and rat brain revealed widespread cytoplasmic labeling of huntingtin within neurons, particularly cell bodies and dendrites, rather than the more selective pattern of axon terminal labeling characteristic of many vesicle-associated proteins. At the ultrastructural level, immunoreactivity in cortical neurons was detected in the matrix of the cytoplasm and around the membranes of the vesicles. The ubiquitous cytoplasmic distribution of huntingtin in neurons and its association with vesicles suggest that huntingtin may have a role in vesicle trafficking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.