Chronic intermittent hypoxia (CIH) has been used as a model to mimic nocturnal apnea, which is associated with hypertension. One of the mechanisms for hypertension in patients with nocturnal apnea is an enhancement of the plasma membrane response to acute hypoxia in carotid body glomus cells. Hypoxia is known to induce depolarization via inhibiting TWIK-related acid-sensitive K+ (TASK) channels, one type of leak K+ channels, in glomus cells. The present experiment was undertaken to immunocytochemically investigate the effects of CIH on the expression and intracellular localization of TASK1 channels and p11 that critically affect the trafficking of TASK1 to the cell surface. The expression levels of TASK1 proteins and p11 and their intracellular localization in rat carotid body glomus cells were not noticeably affected by CIH, suggesting that the enhanced membrane response to acute hypoxia is not due to an increase in surface TASK channels.
Read full abstract