Abstract

Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, enhances carotid body (CB) chemosensory responses to acute hypoxia. In spite of that, the primary molecular target of CIH in the CB remains unknown. A key step of the hypoxic response in the CB is the chemoreceptor cell depolarization elicited by the inhibition of K+ channels. Thus, we tested the hypothesis that CIH potentiates the hypoxic-induced depolarization of rat CB chemoreceptor cells by enhancing the inhibition of a background K+ TASK-like channel. Membrane potential, single channel and macroscopic currents were recorded in the presence of TEA and 4-aminopyridine in CB chemoreceptor cells isolated from adult rats exposed to CIH. The CIH treatment did not modify the resting membrane properties but the hypoxic-evoked depolarization increased by 2-fold. In addition, the hypoxic inhibition of the TASK-like channel current was larger and faster in glomus cells from CIH-treated animals. This novel effect of CIH may contribute to explain the enhancing effect of CIH on CB oxygen chemoreception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.