Abstract

Chronic post-natal hyperoxia reduces the hypoxic ventilatory response by reducing the carotid body sensitivity to acute hypoxia as demonstrated by a reduced afferent nerve response, reduced calcium response of carotid body glomus cells and reduced catecholamine secretion in response to acute hypoxia. The present study examined whether hyperoxia alters the electrophysiological characteristics of glomus cells. Rats were treated with hyperoxia for 1 week starting at P1 or P7 and for 2 weeks starting at P1 followed by harvesting and dissociation of their carotid bodies for whole cell, perforated-patch recording. As compared to glomus cells from normoxia animals, hyperoxia treated cells showed a significant reduction in the magnitude of depolarization in response to hypoxia and anoxia, despite little change in the depolarizing response to 20mMK+. Resting cell membrane potential in glomus cells from rats exposed to hyperoxia from P1 to P15 and studied at P15 was slightly depolarized compared to other treatment groups and normoxia-treated cells, but conductance normalized to cell size was not different among groups. We conclude that postnatal hyperoxia impairs carotid chemoreceptor hypoxia transduction at a step between hypoxia sensing and membrane depolarization. This occurs without a major change in baseline electrophysiological characteristics, suggesting altered signaling or alterations in the relative abundance of different leak channel isoforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.