Abstract BRAF mutations in colorectal cancer comprise three functional classes: class 1 (V600E) with strong constitutive activation, class 2 with pathogenic kinase activity lower than that of class 1, and class 3 which paradoxically lacks kinase activity. Non–class 1 mutations associate with better prognosis, microsatellite stability, distal tumor location, and better anti-EGFR response. An analysis of 13 colorectal cancer cohorts (n = 6,605 tumors) compared class 1 (n = 709, 10.7% of colorectal cancers), class 2 (n = 31, 0.47%), and class 3 (n = 81, 1.22%) mutations. Class 2–mutant and class 3–mutant colorectal cancers frequently co-occurred with additional Ras pathway mutations (29.0% and 45.7%, respectively, vs. 2.40% in class 1; P < 0.001), often at atypical sites (KRAS noncodon 12/13/61, NRAS, or NF1). Ras pathway activation was highest in class 1 and lowest in class 3, with a greater distal expression of EGFR ligands (amphiregulin/epiregulin) supporting weaker BRAF driver mutations. Unlike class 1 mutants, class 3 tumors resembled chromosomally unstable colorectal cancers in mutation burdens, signatures, driver mutations, and transcriptional subtypes, whereas class 2 mutants displayed intermediate characteristics. Atypical BRAF mutations were associated with longer overall survival than class 1 mutations (HR = 0.25; P = 0.011) but lost this advantage in cancers with additional Ras mutations (HR = 0.94; P = 0.86). This study supports the suggestion that class 3 BRAF mutations amplify existing Ras signaling in a two-mutation model and that the enhancement of weak/atypical Ras mutations may suffice for tumorigenesis, with potentially clinically important heterogeneity in the class 2/3 subgroup. Implications: The heterogeneous nature of BRAF-mutant colorectal cancers, particularly among class 2/3 mutations which frequently harbor additional Ras mutations, highlights the necessity of comprehensive molecular profiling.
Read full abstract