Abstract

ARID genes encode subunits of SWI/SNF chromatin remodeling complexes and are frequently mutated in human cancers. We investigated the correlation between ARID mutations, molecular features, and clinical outcomes in melanoma patients. Cutaneous melanoma samples (n = 1577) were analyzed by next-generation sequencing. Samples were stratified by pathogenic/likely pathogenic mutation in ARID genes (ARID1A/2/1B/5B). PD-L1 expression was assessed using IHC (SP142; positive (+): ≥ 1%). Tumor mutation burden (TMB)-high was defined as ≥ 10 mutations/Mb. Transcriptomic signatures predictive of response to immune checkpoint inhibitors—interferon gamma and T-cell inflamed score were calculated. Real-world overall survival (OS) information was obtained from insurance claims data, with Kaplan–Meier estimates calculated from time of tissue collection until last date of contact. Mann–Whitney U, Chi-square, and Fisher exact tests were applied where appropriate, with p values adjusted for multiple comparisons. ARID2 mutations were more prevalent in cutaneous melanoma compared to ARID1A (11.0%: n = 451 vs 2.8%: n = 113), with concurrent ARID1A/ARID2 mutation in 1.1% (n = 46) of samples. ARID mutations were associated with a high prevalence of RAS pathway mutations—NF1 (ARID1A, 52.6%; ARID2, 48.5%; ARID1A/2, 63.6%; and ARID-WT, 13.3%; p < 0.0001) and KRAS (ARID1A, 3.5%; ARID2, 3.1%; ARID1A/2, 6.5%; and ARID-WT, 1.0%; p = 0.018)), although BRAF mutations were less common in ARID-mutated cohorts (ARID1A, 31.9%; ARID2, 35.6%; ARID1A/2, 26.1%; and ARID-WT, 50.4%; p < 0.0001). TMB-high was more common in ARID-mutated samples (ARID1A, 80.9%; ARID2, 89.9%; ARID1A/2, 100%; and ARID-WT, 49.4%; p < 0.0001), while PD-L1 positivity was similar across subgroups (ARID1A, 43.8%; ARID2, 51.1%; ARID1A/2, 52.5%; and ARID-WT, 44.9%; p = 0.109). Patients with ARID1A mutations had a higher prevalence of dMMR/MSI-H compared to those with ARID-WT (2.7% vs 0.2%, p = 0.030). Median IFN-γ and T-cell signatures were higher in ARID2-mutated samples compared to ARID-WT (IFN-γ: − 0.15 vs − 0.21, p = 0.0066; T-cell: 23.5 vs − 18.5, p = 0.041). ARID2-mutated patients had improved survival compared to ARID-WT; (HR: 1.22 (95% CI 1.0–1.5), p = 0.022). No additional OS benefit was observed with anti-PD-1 therapy for ARID2 mutation compared to ARID-WT. Melanoma patients with ARID mutations exhibited higher prevalence of markers associated with ICI response, including TMB-H, and immune-related signatures. Our data also suggests improved survival outcome in patients with ARID2 mutations, irrespective of anti-PD1 therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call