BackgroundClinical scales to detect large vessel occlusion (LVO) may help to determine the optimal transport destination for patients with suspected acute ischemic stroke (AIS). The clinical benefit associated with improved diagnostic accuracy of these scales has not been quantified.MethodsWe used a previously reported conditional model to estimate the probability of good outcome (modified Rankin scale sore ≤2) for patients with AIS and unknown vessel status occurring in regions with greater proximity to a primary than to a comprehensive stroke center. Optimal rapid arterial occlusion evaluation (RACE) scale cutoff scores were calculated based on time-dependent effect-size estimates from recent randomized controlled trials. Probabilities of good outcome were compared between a triage strategy based on these cutoffs and a strategy based on a hypothetical perfect LVO detection tool with 100% diagnostic accuracy.ResultsIn our model, the additional benefit of a perfect LVO detection tool as compared to optimal transport-time dependent RACE cutoff scores ranges from 0 to 5%. It is largest for patients with medium stroke symptom severity (RACE score 5) and in geographic environments with longer transfer time between the primary and comprehensive stroke center.ConclusionBased on a probabilistic conditional model, the results of our simulation indicate that more accurate prehospital clinical LVO detections scales may be associated with only modest improvements in the expected probability of good outcome for patients with suspected acute ischemic stroke and unknown vessel status.
Read full abstract