The range-separation parameter in tuned, range-separated exchange-correlation functionals is investigated in two contexts. First, the system dependence of the parameter is investigated for a series of systems obtained by successively ionizing a single species, paying particular attention to the degree of linearity in the energy versus electron number curve. The parameter exhibits significant system dependence and, therefore, achieving near-linearity in one segment of the curve leads to strong nonlinearity in other segments. This provides a challenging test case for the development of new functionals designed to overcome the known problems of this class of functional. Next, the study considers whether a range-separation parameter tuned to a Koopmans energy condition is also applicable for the analogous density condition. This is tested by comparing two formulations of the Fukui function of conceptual density functional theory, for three representative systems. Both formulations yield the same general features and are not highly sensitive to the range-separation parameter. However, the agreement between the two is near-optimal when the energy-tuned parameter is used, indicating that this parameter is applicable for the analogous density condition.