Abstract
Accurate determination of both fundamental and optical gap is necessary for designing molecules relevant for organic photovoltaics. Here, we study how range-separated density functionals reproduce frontier orbital energies, HOMO (highest occupied molecular orbital)–LUMO (lowest unoccupied molecular orbital) gaps, and optical gaps for molecules relevant for organic photovoltaics. In this study, we consider 12 different range-separated density functional for computing HOMO energy, HOMO–LUMO gap, and optical gap which are compared with available experimental and reported GW values. We found that the reproduction of desired photovoltaic properties primarily depend on range separation parameter. Moreover, the tested functionals are comparable with OT-BNL functional.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.