Bio-inspired models based on the lobula giant movement detector (LGMD) in the locust's visual brain have received extensive attention and application for collision perception in various scenarios. These models offer advantages such as low power consumption and high computational efficiency in visual processing. However, current LGMD-based computational models, typically organized as four-layered neural networks, often encounter challenges related to noisy signals, particularly in complex dynamic environments. Biological studies have unveiled the intrinsic stochastic nature of synaptic transmission, which can aid neural computation in mitigating noise. In alignment with these biological findings, this paper introduces a probabilistic LGMD (Prob-LGMD) model that incorporates a probability into the synaptic connections between multiple layers, thereby capturing the uncertainty in signal transmission, interaction, and integration among neurons. Comparative testing of the proposed Prob-LGMD model and two conventional LGMD models was conducted using a range of visual stimuli, including indoor structured scenes and complex outdoor scenes, all subject to artificial noise. Additionally, the model's performance was compared to standard engineering noise-filtering methods. The results clearly demonstrate that the proposed model outperforms all comparative methods, exhibiting a significant improvement in noise tolerance. This study showcases a straightforward yet effective approach to enhance collision perception in noisy environments.
Read full abstract