Interpretation of Re–Os isotopic systematics applied to mantle and mantle-derived rocks is currently hindered by the poorly understood behaviour of Re and Os during partial melting. Of particular interest is the incompatibility of Re and how it partitions between melt and the different mantle phases. Here, we study the partitioning behaviour of Re between the common upper mantle minerals (garnet, spinel, clinopyroxene, orthopyroxene, and olivine) and silicate melt under temperature (1275–1450 °C) and pressure (1.5–3.2 GPa) conditions relevant for basaltic magma genesis, over a range of oxygen fugacity (ƒO 2) large enough (QFM+5.6 to QFM−2.9) to demonstrate the effects of changing the oxidation state of Re from 4+ to 6+. Rhenium crystal/silicate-melt partition coefficients vary by 4–5 orders of magnitude, from moderately compatible to highly incompatible, for pyroxenes, garnet, and spinel as the oxidation state of Re changes from 4+ to 6+, but Re in either oxidation state is incompatible in olivine. Because the changeover from the one Re oxidation state to the other occurs over the range of ƒO 2s pertinent to partial melting in the Earth’s mantle, bulk Re crystal/silicate-melt partition coefficients during mantle melting are also expected to vary significantly according to the oxidation state of the system. For instance, assuming QFM−0.7 and QFM+1.6 as average ƒO 2 for mid-ocean ridge (MORBs) and island arc (IABs) basalts, respectively, a difference of at least one order of magnitude for bulk Re partition coefficients is expected (excluding any influence from a sulphide phase). Hence, Re is probably much more incompatible during the genesis of IABs compared to MORBs. Our results also demonstrate that Re 4+ has a partitioning behaviour similar to Ti 4+ rather than Yb, and is accordingly not a sensitive indicator of garnet in the source. The lower concentrations of Re observed in ocean island basalts (OIBs) compared to MORBs are therefore not a result of being generated deeper in the mantle where garnet is stable, leaving the hypothesis of late-stage loss of Re from OIB lavas by degassing as the most plausible explanation.