The phosphate content of ancient alkali-glass has been tested as an indicator for biogenic ash, used in glass production. The living tissue of plants and vertebrates accumulates phosphate that remains in native ash as a main component (1 to over 10 wt%) forming together with biologically essential element oxides a complex chemical fingerprint that characterises any glass made with it. If, instead of native plant ash its alkali extract is used, soluble oxides are concentrated in the extract whilst insoluble oxides get depleted, leading to a different elemental fingerprint of the glass. Geogenic raw-materials for glass production like quartz-rich sand, evaporitic natron, or limestone are virtually phosphate free (below detection limit up to ≈0.15 wt%). Several collections of ancient glass stemming from different archaeological excavations, regions and times have been analysed by instrumental methods (WD-XFA, ED-XFA, thermal techniques), i.e. flat- and hollow K–Ca glass dated 1699/1714 N = 340, Na–Ca glass 13th/14th cy N = 94, Na–Ca glass 7th/9th cy N = 110, and alkali-Ca glass La Tene N = 395. Although the phosphate content of native alkali plant ash gets diluted with quartz sand by a factor of roughly two in glass production, it remains a main component of the product glass. Wood-ash glass contains 1–3 wt% phosphate, whilst glass manufactured from halophyte ash contains around 0.2–1 wt%. When processed wood-ash is used, the phosphate content in glass sinks below 1 wt%, the depletion factor amounting to roughly 8–15. Glass made from evaporitic soda displays phosphate contents below 0.2 wt% in the cases examined. The phosphate content of ancient alkali glass thus indicates whether virtually phosphate-free evaporitic soda has been used as a flux, or native ash of halophile plants. Ternary melting diagrams reveal at least three groups of alkali glass: Naturally coloured forest glass displays a broad distributional pattern with minimum melting temperatures ranging from 1200 to ≥1450 °C, colourless potash-extract glass from 900 to ≈1200 °C, and the typical, tight cluster of Roman sodium-calcium glass ranges from 800 to ≈900 °C. The wide-spread sodium-lime glass made with native halophytic ash, contains besides Na2O as the chemical main component always some K2O, and melting temperatures range from 800 to ≈1000 °C.