Understanding how solid fats structures come about in edible oils and quantifying their structures is of fundamental importance in developing edible oils with pre-selected characteristics. We considered the great range of fractal dimensions, from 1.91 to 2.90, reported from rheological measurements. We point out that, if the structures arise via DLA/RLA or DLCA/RLCA, as has been established using ultra small angle x-ray scattering (USAXS), we would expect fractal dimensions in the range ~1.7 to 2.1, and ~2.5 or ~3.0. We present new data for commercial fats and show that the fractal dimensions deduced lie outside these values. We have developed a model in which competition between two processes can lead to the range of fractal dimensions observed. The two processes are (i) the rate at which the solid fat particles are created as the temperature is decreased, and (ii) the rate at which these particles diffuse, thereby meeting and forming aggregates. We assumed that aggregation can take place essentially isotropically and we identified two characteristic times: a time characterizing the rate of creation of solid fats, , where is the rate of solid condensation (cm3 s−1), and the diffusion time of solid fats, , where is their diffusion coefficient and is the typical average distance that fats must move in order to aggregate. The intent of this model is to show that a simple process can lead to a wide range of fractal dimensions. We showed that in the limit of very fast solid creation, the fractal dimension is predicted to be that of DLCA, ~1.7, relaxing to that of RLCA, 2.0–2.1, and that in the limit of very slow solid creation, , the fractal dimension is predicted to be that obtained via DLA, ~2.5, relaxing to that of RLA, 3.0. We predict that, given a system which satisfies our model assumptions and which can either be cooled rapidly or cooled slowly to yield fractal dimensions and then . This is supported by both rheological [] and USAXS measurements [, ] even though the latter models do not conform to the assumptions of those presented here.
Read full abstract