The agricultural sector is undergoing a transformative paradigm shift with the integration of advanced technologies, particularly artificial intelligence (AI), to enhance data analysis techniques and streamline decision-making processes. This paper delves into the integration of advanced technologies in agriculture, focusing specifically on optimizing data analysis through artificial intelligence (AI) to strengthen decision-making processes in farming. We present a novel AI-powered model that leverages historical agricultural datasets, utilizing a comprehensive array of established machine learning algorithms to enhance the prediction and classification of agricultural data. This work provides tailored algorithm recommendations, bypassing the need to deploy and fine-tune numerous algorithms. We approximate the accuracy of suitable algorithms, highlighting those with the highest precision, thus saving time by leveraging pre-trained AI models on historical agricultural data. Our method involves three phases: collecting diverse agricultural datasets, applying multiple classifiers, and documenting their accuracy. This information is stored in a CSV file, which is then used by AI classifiers to predict the accuracy of new, unseen datasets. By evaluating feature information and various data segmentations, we recommend the configuration that achieves the highest accuracy. This approach eliminates the need for exhaustive algorithm reruns, relying on pre-trained models to estimate outcomes based on dataset characteristics. Our experimentation spans various configurations, including different training–testing splits and feature sets across multiple dataset sizes, meticulously evaluated through key performance metrics such as accuracy, precision, recall, and F-measure. The experimental results underscore the efficiency of our model, with significant improvements in predictive accuracy and resource utilization, demonstrated through comparative performance analysis against traditional methods. This paper highlights the superiority of the proposed model in its ability to systematically determine the most effective algorithm for specific agricultural data types, thus optimizing computational resources and improving the scalability of smart farming solutions. The results reveal that the proposed system can accurately predict a near-optimal machine learning algorithm and data structure for crop data with an accuracy of 89.38%, 87.61%, and 84.27% for decision tree, random forest, and random tree algorithms, respectively.