Abstract

Understanding and predicting consumer behavior will help e-commerce businesses improve customer satisfaction and devise better marketing strategies. This study is intended to explore the use of decision tree algorithms in predictions of consumer purchase behavior in the e-commerce platform in Malaysia. Comparing the performances of J48, Random Tree, and REPTree decision tree models using an online shopper dataset collected by surveying 560 Malaysians, on various aspects like accuracy, precision, recall, and F1 score. Results indicate that the highest accuracy has been achieved with the Random Tree algorithm, outperforming J48 and REPTree. The results will, therefore, form the basis upon which e-commerce can restrategize its marketing programs for better customer engagement. This is an important study in that it shows the efficacy of applying a decision tree algorithm to understand customer behavior in the context of Malaysia and adds to the growing body of knowledge in predictive analytics in e-commerce.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.