Abstract

Software Fault Prediction is a critical domain in machine learning aimed at pre-emptively identifying and mitigating software faults. This study addresses challenges related to imbalanced datasets and feature selection, significantly enhancing the effectiveness of fault prediction models. We mitigate class imbalance in the Unified Dataset using the Random-Over Sampling technique, resulting in superior accuracy for minority-class predictions. Additionally, we employ the innovative Ant-Colony Optimization algorithm (ACO) for feature selection, extracting pertinent features to amplify model performance. Recognizing the limitations of individual machine learning models, we introduce the Dynamic Classifier, a ground-breaking ensemble that combines predictions from multiple algorithms, elevating fault prediction precision. Model parameters are fine-tuned using the Grid-Search Method, achieving an accuracy of 94.129% and superior overall performance compared to random forest, decision tree and other standard machine learning algorithms. The core contribution of this study lies in the comparative analysis, pitting our Dynamic Classifier against Standard Algorithms using diverse performance metrics. The results unequivocally establish the Dynamic Classifier as a frontrunner, highlighting its prowess in fault prediction. In conclusion, this research introduces a comprehensive and innovative approach to software fault prediction. It pioneers the resolution of class imbalance, employs cutting-edge feature selection, and introduces dynamic ensemble classifiers. The proposed methodology, showcasing a significant advancement in performance over existing methods, illuminates the path toward developing more accurate and efficient fault prediction models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.