Abstract

Non-functional properties, such as runtime or memory use, are important to mobile app users and developers, as they affect user experience. We propose a practical approach and the first open-source tool, GIDroid for multi-objective automated improvement of Android apps. In particular, we use Genetic Improvement, a search-based technique that navigates the space of software variants to find improved software. We use a simulation-based testing framework to greatly improve the speed of search. GIDroid contains three state-of-the-art multi-objective algorithms, and two new mutation operators, which cache the results of method calls. Genetic Improvement relies on testing to validate patches. Previous work showed that tests in open-source Android applications are scarce. We thus wrote tests for 21 versions of 7 Android apps, creating a new benchmark for performance improvements. We used GIDroid to improve versions of mobile apps where developers had previously found improvements to runtime, memory, and bandwidth use. Our technique automatically re-discovers 64% of existing improvements. We then applied our approach to current versions of software in which there were no known improvements. We were able to improve execution time by up to 35%, and memory use by up to 33% in these apps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.