This article discusses the implementation of a 2-D pseudospectral time-domain (PSTD) full-wave simulator for solving large-scale low-frequency (e.g., HF) electromagnetic (EM) scattering problems with the application of radar sounding of planetary subsurfaces. Compared to other computational EM algorithms, the PSTD solver is both memory-efficient and accurate for sounding applications. New domain designs are developed to efficiently simulate 2-D scattering of half-space media for normal and oblique incidence from arbitrary wave sources. As a validation of the PSTD simulator, the simulated 2-D scattering radar cross width (RCW) is compared with the analytical solutions of both point targets (dielectric cylinders) and distributed targets (random rough surfaces), for the first time, where the frequency and angular (bistatic scattering) dependence are studied with various choices of grid sampling resolution. Furthermore, the PSTD solver is applied to passive synthetic aperture radar (SAR) sounding problems (single transmitter and several receivers), for the first time, where various scenarios (e.g., cylinder, surface, and volume) are demonstrated and the targets are correctly resolved after focusing, indicating an accurate simulation of the phase history. Finally, an example of using the solver is shown for emulating 3-D large-scale radar sounding problems with cross-track surface and subsurface scattering. This is particularly useful to simulate radar sounding returns and SAR-focused imagery of large-scale subsurface structures to better support planetary missions with radar sounding instruments.
Read full abstract