The aim of this study was to assess the impact of genotype-environment interaction (GEI) on the manifestation of traits such as age at first calving (AFC), age at first service (AFS), and calving interval (CI) through the application of the reaction norm model in Holstein cattle raised in Paraná state, Brazil. Utilizing data from the milk testing service of the Paraná Association of Holstein Cattle Breeders (APCBRH), this study analyzed records from 179,492 animals undergoing their first, second, and third lactations from the years 2012 to 2022. These animals were part of 513 herds spread across 72 municipalities in Paraná. The environmental gradient was established by normalizing contemporary group solutions, derived from the animal model, with the 305-day-corrected milk yield serving as the dependent variable. Subsequently, reaction norms were determined utilizing a Random Regression Model. Spearman's correlation was then applied to compare the estimates of breeding values across different environmental gradients for the studied traits. The highest EG (+ 4) indicates the least challenging environments, where animals experience better environmental conditions. Conversely, lower EG (-4) values represent the most challenging environments, where animals endure worse conditions. The only trait that exhibited a moderate heritability magnitude was AFC (0.23) in the least challenging environmental condition. The other traits were classified as having low heritability magnitudes regardless of the evaluated environmental gradient. While minimal evidence was found for the influence of GEI on CI, a clear GEI effect was observed for AFC and AFS across all environmental gradients examined. A reversal in genotype ranking occurred under extreme environmental conditions. The findings suggest that the best-performing genotype under one environmental gradient may not necessarily excel under another.
Read full abstract