Many technological enhancements are being developed worldwide to enable the “Internet of Things” (IoT). IoT networks largely rely on distributed access of billions of devices, but are still lagging in terms of combined reliability and low latency. To mend that shortcoming, it is paramount to adapt existing random access methods for the IoT setting. In this article, we shed light on one of the modern candidates for random access protocols fitted for IoT: the “Irregular Repetition Slotted ALOHA” (IRSA). As self-managing solutions are needed to overcome the challenges of IoT, we study the IRSA random access scheme in a distributed setting where groups of users, with fixed traffic loads, are competing for ALOHA-type channel access. To that aim, we adopt a distributed game-theoretic approach where two classes of IoT devices learn autonomously their optimal IRSA protocol parameters to optimize selfishly their own effective throughput. Through extensive simulations, we assess the notable efficiency of the game based distributed approach. We also show that our IRSA game attains the Nash equilibrium (NE) via the “better reply” strategy, and we quantify the price of anarchy in comparison with a centralized approach. Our results imply that user competition does not fundamentally impact the performance of the IRSA protocol.
Read full abstract