Abstract

This paper is concerned with the moving horizon (MH) estimation issue for a type of networked nonlinear systems (NNSs) with the so-called random access (RA) protocol scheduling effects. To handle the signal transmissions between sensor nodes and the MH estimator, a constrained communication channel is employed whose channel constraints implies that at each time instant, only one sensor node is permitted to access the communication channel and then send its measurement data. The RA protocol, whose scheduling behavior is characterized by a discrete-time Markov chain (DTMC), is utilized to orchestrate the access sequence of sensor nodes. By extending the robust MH estimation method, a novel nonlinear MH estimation scheme and the corresponding approximate MH estimation scheme are developed to cope with the state estimation task. Subsequently, some sufficient conditions are established to guarantee that the estimation error is exponentially ultimately bounded in mean square. Based on that the main results are further specialized to linear systems with the RA protocol scheduling. Finally, two numerical examples and the corresponding figures are provided to verify the effectiveness/correctness of the developed MH estimation scheme and approximate MH estimation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.