Forest biomass accumulation is fundamental to ecosystem stability, material cycling, and energy flow, and pit lays a crucial role in the carbon cycle. Understanding the factors influencing aboveground biomass (AGB) is essential for exploring ecosystem functioning mechanisms, restoring degraded forests, and estimating carbon balance in forest communities. Tropical karst seasonal rainforests are species-rich and heterogeneous, yet the impact mechanisms of biotic and abiotic factors on AGB remain incompletely understood. Based on the survey data of a 15 ha monitoring plot in a karst seasonal rainforest in Southern China, this study explores the distribution characteristics of AGB and its intrinsic correlation with different influencing factors. The results show that the average AGB of the plot is 125.7 Mg/ha, with notable variations among habitats, peaking in hillside habitats. Trees with medium and large diameters at breast height (DBH ≥ 10 cm) account for 83.94% of the aboveground biomass (AGB) and are its primary contributors; dominant tree species exhibit higher AGB values. Both biotic and abiotic elements substantially influence AGB, with biotic factors exhibiting the largest influence. Among abiotic factors, topographic factors have a strong direct or indirect influence on AGB, while soil physicochemical properties have the smallest indirect impact. This research provides a comprehensive understanding of AGB distribution and its influencing factors in tropical karst forests (KFs), contributing to the management of carbon sinks in these ecosystems.