Abstract
Accurately quantifying tree and forest structure is important for monitoring and understanding terrestrial ecosystem functioning in a changing climate. The emergence of laser scanning, such as Terrestrial Laser Scanning (TLS) and Unoccupied Aerial Vehicle Laser Scanning (UAV-LS), has advanced accurate and detailed forest structural measurements. TLS generally provides very accurate measurements on the plot-scale (a few ha), whereas UAV-LS provides comparable measurements on the landscape-scale (>10 ha). Despite the pivotal role dense tropical forests play in our climate, the strengths and limitations of TLS and UAV-LS to accurately measure structural metrics in these forests remain largely unexplored. Here, we propose to combine TLS and UAV-LS data from dense tropical forest plots to analyse how this fusion can further advance 3D structural mapping of structurally complex forests. We compared stand (vertical point distribution profiles) and tree level metrics from TLS, UAV-LS as well as their fused point cloud. The tree level metrics included the diameter at breast height (DBH), tree height (H), crown projection area (CPA), and crown volume (CV). Furthermore, we evaluated the impact of point density and number of returns for UAV-LS data acquisition. DBH measurements from TLS and UAV-LS were compared to census data. The TLS and UAV-LS based H, CPA and CV measurements were compared to those obtained from the fused point cloud. Our results for two tropical rainforest plots in Australia demonstrate that TLS can measure H, CPA and CV with an accuracy (RMSE) of 0.30 m (Haverage =27.32 m), 3.06 m2 (CPAaverage =66.74 m2), and 29.63 m3 (CVaverage =318.81 m3) respectively. UAV-LS measures H, CPA and CV with an accuracy (RMSE) of <0.40 m, <5.50 m2, and <30.33 m3 respectively. However, in dense tropical forests single flight UAV-LS is unable to sample the tree stems sufficiently for DBH measurement due to a limited penetration of the canopy. TLS can determine DBH with an accuracy (RMSE) of 5.04 cm, (DBHaverage =45.08 cm), whereas UAV-LS can not. We show that in dense tropical forests stand-alone TLS is able to measure macroscopic structural tree metrics on plot-scale. We also show that UAV-LS can be used to quickly measure H, CPA, and CV of canopy trees on the landscape-scale with comparable accuracy to TLS. Hence, the fusion of TLS and UAV-LS, which can be time consuming and expensive, is not required for these purposes. However, TLS and UAV-LS fusion opens up new avenues to improve stand-alone UAV-LS structural measurements at the landscape-scale by applying TLS as a local calibration tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.