Abstract

To understand soil biodiversity we need to know how soil communities are assembled. However, the relationship between soil community assembly and environmental factors, and the linkages between soil microbiota taxonomic groups and their body sizes, remain unexplored in tropical seasonal rainforests. Systematic and stratified random sampling was used to collect 243 soil and organism samples across a 20-ha plot in a tropical seasonal rainforest in southwestern China. High-throughput sequencing, variation analysis and principal coordinates of neighbourhood matrices were performed. Soil community composition, spatial distribution and assembly processes based on propagule size (including archaea, bacteria, fungi and nematodes) were investigated. The results showed that: (i) the community assembly of small soil microorganisms (bacteria, fungi) was mostly influenced by stochastic processes while that of larger soil organisms (nematodes) was more deterministic; (ii) the independent effects of habitat (including soil and topographic variables) and its interaction with plant attributes for community structure significantly decreased with increasing body size; and (iii) plant leaf phosphorus directly influenced the spatial distribution of soil-available phosphorus, which indicates their indirect impact on the assembly of the soil communities. Our data suggest that the assembly of multitrophic soil communities can be explained to some extent by changes in above-ground plant attributes. This highlights the importance of above- and below-ground linkages in influencing multitrophic soil microbiota community assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call