The 5-hydroxytryptamine receptor (5-HTR) family includes seven classes of receptors. The 5-HT7R is the newest member of this family and contributes to different physiological and pathological processes. As a pathology, glioblastoma multiform (GBM) overexpresses 5-HT7R; hence, this study aims to develop radiolabeled aryl piperazine derivatives as 5-HT7R imaging agents. METHODS: Compounds 6 and 7 as 1-(3-nitropyridin-2-yl)piperazine derivatives were radiolabeled with fac-[99mTc(CO)3(H2O)3]+ and 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were obtained with high radiochemical purity (RCP > 94%).The stability of the radiotracers was evaluated in both saline and mouse serum. Specific binding on different cell lines including U-87 MG, MCF-7, SKBR3, and HT-29 was performed. The biodistribution of these radiotracers was evaluated in normal and U-87 MG Xenografted models. Finally, 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were applied for in vivo imaging in U-87 MG Xenografted models. Specific binding study indicates that 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can recognize 5-HT7R of U87-MG cell line. The biodistribution study in normal mice indicates that the brain uptake of 99mTc(CO)3-[6] and 99mTc(CO)3-[7] is the highest at 30min post-injection (0.8 ± 0.25 and 0.64 ± 0.18%ID/g, respectively). The data of the biodistribution study in the U87-MG xenograft model revealed that these radiotracers could accumulate in the tumor site, and the highest tumor uptake was observed at 60min post-injection (3.38 ± 0.65 and 3.27 ± 0.5%ID/g, respectively). The injection of pimozide can block the tumor's radiotracer uptake, indicating the binding of these radiotracers to the 5-HT7R. The imaging study in the xenograft model also confirms the biodistribution data. The acquired images clearly show the tumor site, and the tumor-to-muscle ratio for 99mTc(CO)3-[6] and 99mTc(CO)3-[7] at 60min was 3.33 and 3.88, respectively. CONCLUSIONS: 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can visualize tumorin theU87-MG xenograft modeldueto their affinitytoward5-HT7R.