Abstract
Two new bicyclic arginine-glycine-aspartic acid (RGD) peptides, c(RGD-ACP-K) (1a) and c(RGD-ACH-K) (1b), incorporating the aminocyclopentane (ACP) and aminocyclohexane (ACH) carboxylic acids, respectively, were synthesized by grafting the aminocycloalkane carboxylic acids onto the tetra-peptide RGDK sequence. These peptides and their conjugates with DO3A (1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid) (2a-b) exhibit high affinity toward U87MG glioblastoma cells. Their affinity is greater than that exhibited by c(RGDyK). Labeling these conjugates with radiometal (64)Cu resulted in high radiochemical yields (>97%) of the corresponding complexes, abbreviated as c(RGD-ACP-K)-DOTA-(64)Cu (3a) and c(RGD-ACH-K)-DOTA-(64)Cu (3b). Both 3a and 3b are stable for 24 h in human and mouse serums and show high tumor uptake, as observed by positron emission tomography (PET). Blocking experiments with 3a and 3b by preinjection of c(RGDyK) confirmed their target specificity and demonstrated their promise as PET radiotracers for imaging ανβ3-positive tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.