To examine the possibility of predicting clinical radiosensitivity by quantifying the nuclear forms of autophosphorylated ATM protein (pATM) via a specific enzyme-linked immunosorbent assay (ELISA). This study was performed on 30 skin fibroblasts from 9 radioresistant patients and 21 patients with adverse tissue reaction events. Patients were divided into 2 groups: radioresistant (toxicity grade <2) and radiosensitive (toxicity grade ≥2). The quantity of nuclear pATM molecules was assessed by the ELISA method at 10minutes and 1hour after 2Gy and compared with pATM immunofluorescence data. The pATM ELISA data were in quantitative agreement with the immunofluorescence data. A receiver operating characteristic analysis was applied first to 2 data sets (a training set [n=14] and a validating [n=16] set) and thereafter to all the data with a 2-fold cross-validation method. The assay showed an area under the curve value higher than 0.8, a sensitivity of 0.8, and a specificity ranging from 0.75 to 1, which strongly documents the predictive power of the pATM ELISA. This study showed that the assessment of nuclear pATM quantity after 2Gy via an ELISA technique can be the basis of a predictive assay with the highest statistical performance among the available predictive approaches.
Read full abstract