The Se78(n,γ)Se79 cross section has a high impact on the abundances of Se78 produced during the slow neutron capture process (s process) in massive stars. A measurement of the Se78 radiative neutron capture cross section has been performed at the Neutron Time-of-Flight facility at CERN using a set of liquid scintillation detectors that have been optimized for a low sensitivity to neutrons. We present resonance capture kernels up to 70 keV and cross section from 70 to 600 keV. Maxwellian-averaged cross section (MACS) values were calculated for stellar temperatures between kT=5 and 100 keV, with uncertainties between 4.6% and 5.8%. The new MACS values result in substantial decreases of 20–30% of Se78 abundances produced in the s process in massive stars and AGB stars. Massive stars are now predicted to produce subsolar Se78/Se76 ratios, which is expected since Se76 is an s-only isotope, while solar Se78 abundances have also contributions from other nucleosynthesis processes. Published by the American Physical Society 2024
Read full abstract