The feasibility of the highly reliable and replicable microstructure formation of the transient liquid phase sintering (TLPS) paste during the early soldering and isothermal aging on the Cu substrate had been successfully investigated in this study. By using the Sn–0.7 wt% Cu (SC) solder paste as the base material and the Cu particles in the production of the TLPS Sn–10 wt% Cu (SC10) solder paste, the ensuing Cu6Sn5 phase from the isothermal aging process was found to have reduced the β-Sn area of the bulk SC10 solder microstructure. The growth kinetic for TLPS SC10 resulted in a 26.76 kJ/mol of activation energy level. The real-time synchrotron radiation imaging technique that was employed in studying the growth and formation of the primary intermetallic phases at the solder joints had also discovered the primary intermetallic in TLPS SC10 was not only found to have experienced an early nucleation just after the solder had melted, but its growth was also restricted prior to the solidification of the liquid solder. Therefore, the relevance of the results that were obtained from this research may offer a possible solution for aiding the future development of highly reliable solder joints in high temperature solder applications.