We consider Klein–Gordon (KG) particles in a global monopole (GM) spacetime within Eddington-inspired Born–Infeld gravity (EiBI-gravity) and in a Wu–Yang magnetic monopole (WYMM). We discuss a set of KG-oscillators in such spacetime settings. We propose a textbook power series expansion for the KG radial wave function that allows us to retrieve the exact energy levels for KG-oscillators in a GM spacetime and a WYMM without EiBI-gravity. We, moreover, report some conditionally exact, closed form, energy levels (through some parametric correlations) for KG-oscillators in a GM spacetime and a WYMM within EiBI-gravity, and for massless KG-oscillators in a GM spacetime and a WYMM within EiBI-gravity under the influence of a Coulomb plus linear Lorentz scalar potential. We report the effects of the Eddington parameter κ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\kappa $$\\end{document}, GM-parameter α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document}, WYMM strength σ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sigma $$\\end{document}, KG-oscillators’ frequency Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega $$\\end{document}, and the coupling parameters of the Coulomb plus linear Lorentz scalar potential, on the spectroscopic structure of the KG-oscillators at hand. Such effects are studied over a vast range of the radial quantum number nr≥0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n_r\\ge 0$$\\end{document} and include energy levels clustering at κ>>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\kappa>>1$$\\end{document} (i.e., extreme EiBI-gravity), and at |σ|>>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|\\sigma |>>1$$\\end{document} (i.e., extreme WYMM strength).
Read full abstract