Maximum potential intensity (MPI), which a TC may reach in certain environment conditions, can be affected by microphysical processes. Latent heat released in the process of TC development plays a significant role in it. However, the impacts of hail added both to single-moment and double-moment microphysics parameterization scheme on the MPI remain unclear. In this study, high-resolution sensitivity experiments are conducted in the Weather Research and Forecasting (WRF) model by using four bulk microphysics schemes belonging to a family, namely, WRF Single-Moment 6-Class (WSM6) scheme, WRF Double-Moment 6-Class (WDM6) scheme, WRF Single-Moment 7-Class (WSM7) scheme, WRF Double-Moment 7-Class (WDM7) scheme. Results show that SM schemes simulate the greater MPI than DM schemes. Adding hail in SM scheme increases the MPI while in DM scheme makes less difference. There is a close relationship between the MPI and the radial peak location and intensity of latent heat. The closer the latent heat peak is to the TC center and the greater the peak intensity is, the greater the MPI can be achieved. Though the presence of hail plays a cooling effect thermally, it may affect the TC structures due to the larger sedimentation speed. WSM7 scheme including hail microphysics simulates the TC with smaller size and eye wall inclination, and thus the latent heating efficiency in the eye wall is higher, which is more conducive to TC intensification. However, the larger content of hail resulting from the accretion of liquid water in WDM7 scheme brings a stronger cooling effect and probably offsets the dynamic advantage.