This brief presents a novel learning scheme for categorical data based on radial basis function (RBF) networks. The proposed approach replaces the numerical vectors known as RBF centers with categorical tuple centers, and employs specially designed measures for calculating the distance between the center and the input tuples. Furthermore, a fast noniterative categorical clustering algorithm is proposed to accomplish the first stage of RBF training involving categorical center selection, whereas the weights are calculated through linear regression. The method is applied on 22 categorical data sets and compared with several different learning schemes, including neural networks, support vector machines, naïve Bayes classifier, and decision trees. Results show that the proposed method is very competitive, outperforming its rivals in terms of predictive capabilities in the majority of the tested cases.
Read full abstract