Abstract
In the construction of a radial basis function (RBF) network, one of the most important issues is the selection of RBF centers. However, many selection methods are designed for the fault free situation only. This paper first assumes that all the training samples are used for constructing a fault tolerant RBF network. We then add an l1 norm regularizer into the fault tolerant objective function. According to the nature of the l1 norm regularizer, some unnecessary RBF nodes are removed automatically during training. Based on the local competition algorithm (LCA) concept, we propose an analog method, namely fault tolerant LCA (FTLCA), to minimize the fault tolerant objective function. We prove that the proposed fault tolerant objective function has a unique optimal solution, and that the FTLCA converges to the global optimal solution. Simulation results show that the FTLCA is better than the orthogonal least square approach and the support vector regression approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.